報告題目:Non-relativistic limit for the cubic nonlinear Klein-Gordon equations
報告人:吳奕飛教授(南京師范大學)
報告時間:2024年11月8日16:00-17:00
報告地點:數學科學學院B327
內容簡介:This talk focuses on the non-relativistic limit of the Cauchy problem for the defocusing cubic nonlinear Klein-Gordon equations. We show that, as the light speed $c$ tends to infinity, the error function is bounded by, (1) in the case of 2D and modulated Schr?dinger-wave profiles, $c^{-2}$, uniformly for all time, under $H^2$ initial data; (2) in the case of both 2D and 3D and modulated Schr?dinger profiles, $c^{-2} +(c^{-2}t)^{\alpha/4}$, under $H^\alpha$ initial data with $2 \leq \alpha \leq 4$. We also show the sharpness of the upper bounds in (1) and (2), and the required minimal regularity on the initial data in (2). This talk is based on a joint work with Zhen Lei.
報告人簡介:吳奕飛,南京師范大學數學科學學院教授、博士生導師。國家級稱號人才。從事偏微分方程理論和數值計算方面的研究工作,在非線性Schr?dinger方程 、KdV方程等整體適定性和低正則算法構造方面做出一系列研究成果,解決了菲爾茲獎獲得者T.Tao等提出的長時間遺留問題,設計了目前為止非線性Schr?dinger方程和KdV方程正則性要求最低的快速格式,在JEMS、CMP、Adv.Math、Anal.PDE、SINUM、Numer.Math.、Math.Comp.等學術期刊中發表論文。
(撰稿:張倩影 審核:張國)
數學科學學院
2024年11月6日


