2023年9月16日,數(shù)學科學學院在A413舉辦“2023年生物數(shù)學前沿問題學術(shù)研討會”。報告內(nèi)容和報告人如下:
報告題目:Mathematical Modeling and Analysis of Climate Changes
報告人:王穩(wěn)地
報告時間:2023年9月16日 上午9:00-9:50
報告形式:線下會議
內(nèi)容簡介:In this talk, I start by talking about how climate changes affect population persistence. After that, I consider effects of a climate-induced range shift on outcomes of two competitive species. Finally, I show how plant behavior responses affect the spatial patterns.
報告人簡介:王穩(wěn)地:西南大學2級教授,博士生導師, 2005年獲得重慶市名師稱號, 2018年獲得重慶市最美教師稱號;從事生物數(shù)學的研究,在種群動力學和傳染病動力學建模和分析方面發(fā)表論文100多篇,8次入選Elsevier數(shù)學類高引用論文作者;已經(jīng)主持國家自然科學基金課題7項、教育部項目2項。
報告題目:Critical Bait Casting Threshold and Disease Transmission Dynamics of Fish in Passive Advective Environments
報告人:原三領(lǐng)
報告時間:2023年9月16日 上午10:10-11:00
報告形式:線下會議
內(nèi)容簡介:This talk is about the dynamics of fish population in passive advective environments which includes two parts. In the first part, we formulate a diffusive bait-fish model with advection term, aiming to determine the bait casting threshold that meets the demand for the breeding and causes less pollution to the water environment. The well-posedness, the net reproductive rate R0 determining the survival of the model and the relationship between R0 and the bait casting rate are fist discussed. Besides, we show that the model undergoes a forward supercritical transcritical bifurcation when the bait casting rate is equal to the critical value. In the second part, we propose a spatial eco-epidemiological system with disease spread within the predator population in open advective environments. The net reproductive rate Rp is first established for the disease-free subsystem to determine whether the predator can invade successfully. The impacts of advection rate on Rp are also discussed. For the scenario of successful invasion of the predator, sufficient conditions for the prevalence of disease and the local stability of disease-free attractor are obtained by dint of persistence theory and comparison theorem.
報告人簡介:原三領(lǐng),上海理工大學教授,博士生導師,中國數(shù)學會生物數(shù)學專業(yè)委員會副主任,國際學術(shù)期刊Mathematical Biosciences and Engineering編委。研究方向為:微分方程與動力系統(tǒng)、生物數(shù)學。先后主持多項國家和上海市基金項目的研究工作。研究內(nèi)容涉及微分方程與動力系統(tǒng)、種群動力學、流行病動力學、海洋生態(tài)學以及生物化學工程等諸多領(lǐng)域,具有鮮明的多學科交叉特點。曾多次受邀到國內(nèi)和國際多所高校進行合作研究和學術(shù)交流。已在Journal of Mathematical Biology、Journal of Differential Equations、Journal of Nonlinear Sciences等國內(nèi)外重要學術(shù)刊物上發(fā)表SCI論文100余篇。
報告題目:Dynamical Analysis of Epidemics Based on Scale-free Networks and Higher-order Networks
報告人:劉茂省
報告時間:2023年9月16日 上午11:00-11:50
報告形式:線下會議
內(nèi)容簡介:In this talk, a new network-based SIR epidemic model, which incorporates the individual medical resource factor and public medical resource factor is proposed, and an epidemic model of the effect of media reports on higher-order networks is proposed, in which the simplicial complex is utilized to construct a social network that describes connections between nodes, where a single link can connect more than two individuals.
The theoretical results are illustrated by numerical simulations. Through theoretical analysis and numerical simulation, it has been found that analyzing the model on the network can lead to more complex dynamic phenomena.
報告人簡介:劉茂省,男,北京建筑大學理學院教授,博士生導師,中國數(shù)學會生物數(shù)學專業(yè)委員會常務(wù)委員。2003年畢業(yè)于西安交通大學獲得理學碩士學位,2009年畢業(yè)于復(fù)旦大學獲得博士學位,2003-2022年工作于中北大學,曾在加拿大約克大學、匈牙利塞格德大學、美國亞利桑那州立大學訪問。主要研究方向為網(wǎng)絡(luò)傳染病動力學,負責主持國家自然科學基金3項,參加國家自然科學基金5項,其中重點項目1項。曾主持山西省1331工程重點創(chuàng)新團隊,主講的《常微分方程》被評為山西省精品課程。曾獲得山西省教學成果一等獎1項(第二完成人),山西省科技獎自然類一等獎1項(第五完成人),二等獎1項(第一完成人)等。
報告題目:Global Existence, Regularity, and Dissipativity of Retarded Reaction-diffusion Equations with Supercritical Nonliearities
報告人:李德生
報告時間:2023年9月16日 下午14:10-15:00
報告形式:線下會議
內(nèi)容簡介:In this talk I will discuss some recent results on the initial-boundary value problem of retarded reaction-diffusion equations in bounded domains with fast-growing nonlinearities. We allow the nonlinear terms to be supercritical, in which case even if local well-posedness is less well understood. We are particularly interested in how dissipative structures of the non-retarded terms can successfully control the retarded ones and produce nice analytic properties and determines the global dynamics of the problem. Specifically, we establish global existence and regularity results for solutions of the problem and prove the existence of global attractors. Although we are working in the context of retarded differential equations, to the best of our knowledge, part of our results are new even for non-retarded equations.
報告人簡介:李德生,天津大學數(shù)學學院教授,博士生導師,主要從事動力系統(tǒng)和非線性微分方程方面的研究工作。1998 年研究了具有快速增長非線性項的 Cahn-Hilliard 系統(tǒng)的全局動力學行為,解決了著名數(shù)學家R.Temam的有關(guān)開問題,論文被全文錄入J.W. Cholewa 和T.Dlotko的專著《Global attractor in abstract parabolic problems》(劍橋大學出版社, 2000), 同時被著名數(shù)學家G.R. Sell,Y.C. You和伍卓群等人的專著所收錄。近期側(cè)重于動力系統(tǒng)的Morse理論、Conley指標和大范圍動態(tài)分支理論方面的研究,完整地建立了非光滑系統(tǒng)不變集和吸引子的Morse理論,由此給出了非線性系統(tǒng)鏈控制集的Morse刻劃;建立了不變集的環(huán)繞定理和山路引理并證明了非自治共振熱方程回復(fù)解的存在性;給出了非線性發(fā)展方程的全局不變集分支定理。作為主持人承擔國家自然科學基金面上項目6項;在國內(nèi)外著名數(shù)學期刊《Indiana Univ. Math. J.》、《J. Diff. Eqns.》、《SIAM J. Cont. Optim.》、《SIAM J. Appl. Dyna. Syst.》等雜志發(fā)表論文50余篇。成果曾獲甘肅省自然科學一等獎、山東省自然科學二等獎各一項。
報告題目:Dynamical Data Science and AI
(動力學的數(shù)據(jù)科學與AI應(yīng)用)
報告人:陳洛南
報告時間:2023年9月16日 下午17:00-17:50
報告形式:線下會議
內(nèi)容簡介:In this talk, I will present a new concept dynamics-based data science in AI applications of biology and medicine for studying dynamical processes and disease progressions, including dynamic network biomarkers (DNB) for early-warning signals of critical transitions, spatial-temporal information (STI) transformation for short-term time-series prediction, and partial cross-mapping (PCM) for causal inference among variables. These methods are all data-driven or model-free approaches but based on the theoretical frameworks of nonlinear dynamics. We show the principles and advantages of dynamics-based data-driven approaches as explicable, quantifiable, and generalizable. In particular, dynamics-based data science approaches exploit the essential features of dynamical systems in terms of data, e.g. strong fluctuations near a bifurcation point, low-dimensionality of a center manifold or an attractor, and phase-space reconstruction from a single variable by delay embedding theorem, and thus are able to provide different or additional information to the traditional approaches, i.e. statistics-based data science approaches. The dynamical-based data science approaches will further play an important role in the systematical research of various fields in biology and medicine as well as AI.
報告人簡介:陳洛南,中國科學院分子細胞科學卓越創(chuàng)新中心研究員,國科大杭州高等研究院首席教授。現(xiàn)任中國生物化學與分子生物學會分子系統(tǒng)生物學專業(yè)分會主任委員,中國生物信息學會(籌)網(wǎng)絡(luò)生物學專業(yè)分會主任委員,IEEE-SMC系統(tǒng)生物學委員會主席,中國運籌學會計算系統(tǒng)生物學分會名譽理事長。主要從事計算系統(tǒng)生物學、大數(shù)據(jù)分析和人工智能的研究工作,國家重點研發(fā)計劃首席科學家,中國運籌學會首屆會士。在系統(tǒng)生物學和復(fù)雜網(wǎng)絡(luò)等研究領(lǐng)域發(fā)表了400余篇期刊論文及10余部編著書籍(H-index= 78; Elsevier高被引)。
(撰稿:裴永珍 審核:張國)
數(shù)學科學學院
2023年9月15日


